Selasa, 25 September 2012

Teori Belajar Matematika



Menurut Bruner (dalam Hudoyo,1990:48) belajar matematika adalah belajar mengenai konsep-konsep dan struktur-struktur matematika yang terdapat di dalam materi yang dipelajari, serta mencari hubungan antara konsep-konsep dan struktur-struktur matematika itu.
Bruner  membagi perkembangan intelektual anak dalam tiga kategori, yaitu enaktif, ikonik dan simbolik (Ruseffendi, 1988). Penjelasan lain, (Dahar, 1989) mengemukakan bahwa belajar melibatkan tiga proses yang berlangsung hampir bersamaan, yaitu memperoleh informasi baru, transformasi informasi dan menguji relevansi dan ketepatan pengetahuan. Bruner mengemukakan 4 dalil yang penting dalam pembelajaran matematika.
  • Dalil Penyusunan. Konsep dalam matematika akan lebih bermakna jika siswa mempelajarinya melalui penyusunan representasi obyek yang dimaksud dan dilakukan secara langsung. Misalnya, jika seorang guru menjelaskan arti 9 (sembilan), maka seyogianya guru meminta siswa untuk menyajikan sebuah himpunan yang jumlah anggotanya sembilan.  Dari beberapa pandangan tentang dalil penyusunan Bruner, maka dapat disimpulkan bahwa siswa hendaknya belajar melalui partisipasi aktif dalam memahami konsep, prinsip, aturan dan teori. Hal ini dapat diperoleh melalui pengalaman dalam melakukan eksperimen atau percobaan yang memungkinkan siswa untuk memahami konsep, prinsip, aturan dan teori itu sendiri.
  • Dalil Notasi. Notasi memiliki peranan penting dalam penyajian konsep. Penggunaan notasi dalam menyatakan sebuah konsep tertentu harus disesuaikan dengan tahap perkembangan mental anak. Penyajiannya dilakukan dengan pendekatan spiral, dimana setiap ide-ide matematika disajikan secara sistematis dengan menggunakan notasi-notasi yang bertiingkat.
  • Dalil Kekontrasan dan Keanekaragaman. Pengontrasan dan keanekaragaman sangat penting dalam melakukan pengubahan konsep difahami dengan mendalam, diperlukan contoh-contoh yang banyak, sehingga anak mampu mengetahui karakteristik konsep tersebut.
  • Dalil Pengaitan. Materi dalam pelajaran matematika dikenal dengan hirarki yang sangat ketat. Suatu topik akan menjadi sulit dipahami oleh siswa manakala belum menguasai materi prasarat yang dibutuhkan. Dengan kata lain bahwa kaitan antara satu konsep dengan konsep yang lain, satu dalil dengan dalil yang lain, satu topik dengan topik yang lain dan satu teori dengan teori yang lain sangat erat. Pengertian tersebut menunjukkan bahwa siswa harus diberi kesempatan sebanyak-banyaknya dalam melihat atau mengkaji kaitan antara suatu topik dengan topik yang lain atau satu konsep dengan konsep yang lain, yang dipelajarinya.
Teori Belajar Robert M. Gagne
Pandangan Gagne tentang belajar dikelompokkan menjadi 8 tipe. Kedelapan tipe tersebut adalah belajar dengan: (1) isyarat (signal), (2) stimulus respons, (3) rangkaian gerak (motor chaining), (4) rangkaian verbal (verbal chaining), (5) memperbedakan (discrimination learning), (6) pembentukan konsep (concept formation), (7) pembentukan aturan (principle formation) dan (8) pemecahan masalah (problem solving) (Ruseffendi, 1988).
Terdapat 2 di antara 8 tipe belajar yang dikemukakan oleh Gagne yang erat kaitannya dengan pendekatan pengajuan masalah matematika, yaitu: (1) rangkaian verbal (verbal chaining) dan (2) pemecahan masalah (problem solving).
  • Rangkaian verbal (verbal chaining). Rangkaian verbal dalam pembelajaran matematika dapat berarti mengemukakan pendapat yang berkaitan dengan konsep, simbol, definisi, aksioma, lemma atau teorema, dalil atau rumus. Sedangkan pengertian rangkaian verbal itu sendiri menurut Ruseffendi (1988) adalah perbuatan lisan terurut dari dua rangkaian kegiatan atau lebih stimulus respons. Dengan memperhatikan pengertian di atas, maka dapat dikatakan bahwa tipe belajar rangkaian verbal dapat mengantarkan siswa dalam mengaitkan antara skemata yang telah dimiliki siswa dengan unsur-unsur dalam matematika yang akan dipelajarinya.
  • Pemecahan Masalah (Problem solving). Pengajuan masalah merupakan langkah kelima setelah empat langkah Polya dalam pemecahan masalah matematika (Gonzales, 1996). Berkaitan dengan pandangan ini, Brown dan Walter (1993) menjelaskan bahwa dengan melihat tahap-tahap kegiatan antara pengajuan dan pemecahan masalah, maka pada dasarnya pembelajaran dengan pengajuan masalah matematika merupakan pengembangan dari pembelajaran dengan pemecahan masalah matematika. Dukungan lain mengenai keeratan hubungan antara kedua pendekatan yang dimaksud di atas adalah tuntutan kemampuan siswa untuk memahami masalah, merencanakan dan menjalankan strategi penyelesaian masalah. Ketiga langkah tersebut juga merupakan langkah-langkah dalam pembelajaran dengan pendekatan pengajuan masalah matematika (Silver et al., 1996). Selain itu, Cars (dalam Sutawidjaja, 1998) menegaskan bahwa untuk meningkatkan kemampuan siswa memecahkan masalah matematika, maka salah satu cara yang dapat dilakukan adalah dengan jalan membiasakan siswa mengajukan masalah, soal, atau pertanyaan matematika sesuai dengan situasi yang diberikan oleh guru.
Menurut Gagne belajar matematika terdiri dari objek langsung dan objek tak langsung. objek tak langsung antara lain kemampuan menyelidiki, kemampuan memecahkan masalah, ketekunan, ketelitian, disiplin diri, bersikap positif terhadap matematika. Sedangkan objek tak langsung berupa fakta, keterampilan, konsep, dan prinsip.
  • Fakta adalah konvensi (kesepakatan) dalam  matematika seperti simbol-simbol matematika. Fakta bahwa 2 adalah simbol untuk kata ”dua”, simbol untuk operasi penjumlahan adalah ”+” dan sinus suatu nama yang diberikan untuk suatu fungsi trigonometri. Fakta dipelajari dengan cara menghafal, drill, latiahan, dan permainan.
  • Keterampilan (Skill) adalah suatu prosedur atau aturan untuk mendapatkan atau memperoleh suatu hasil tertentu. contohnya, keterampilan melakukan pembagian bilangan yang cukup besar, menjumlahkan pecahan dan perkalian pecahan desimal. Para siswa dinyatakan telah memperoleh keterampilan jika ia telah dapat menggunakan prosedur atau aturan yang ada dengan cepat dan tepat.keterampilan menunjukkan kemampuan memberikan jawaban dengan cepat dan tepat.
  • Konsep adalah ide abstrak yang memunkinkan seseorang untuk mengelompokkan suatu objek dan menerangkan apakah objek tersebut merupakan contoh atau bukan contoh dari ide abstrak tersebut. Contoh konsep himpunan, segitiga, kubus, lingkaran. siswa  dikatakan telah mempelajari suatu konsep jika ia telah dapat membedakan contoh dan bukan contoh. untuk sampai ke tingkat tersebut, siswa harus dapat menunjukkan atribut atau sifat-sifat khusus dari objek yang termasuk contoh dan yang bukan contoh.
  • Prinsip adalah pernyataan yang memuat hubungan antara dua konsep atau lebih. Prinsip merupakan yang paling abstrak dari objek matematika yang berupa sifat atau teorema.  Contohnya, teorema Pytagoras yaitu kuadrat hipotenusa pada segitiga siku-siku sama dengan jumlah kuadrat dari dua sisi yang lain. Untuk mengerti teorema Pytagoras harus mengetahui konsep segitiga siku-siku, sudut dan sisi. Seorang siswa dinyatakan telah memahami prinsip jika ia dapat mengingat aturan, rumus, atau teorema yang ada; dapat mengenal dan memahami konsep-konsep yang ada pada prinsip tersebut; serta dapat menggunakannya pada situasi yang tepat.

Teori Belajar Skiner

Ia berpendapat bahwa dalam eksperimen Pavlov seharusnya setelah anjing diberi stimulus berupa bunyi bel, anjing tersebut seharusnya bisa mengambil makanan sendiri. Dalam matematika; untuk merangsang siswa mau belajar maka diberi “reward & funishment” dalam kegiatan tanya-jawab (stimulus-respon), kemudian diberi penguatan/reinforcement berupa penjelasan teoritis materi pelajaran yang ditanyakan tersebut (tanya-jawab) pada siswa.

Tidak ada komentar:

Poskan Komentar